En
Task 1 (5 points)
Using Lagrange interpolation, determine a polynomial through the points , for and , , and . Estimate the interpolation error in the interval using the smallest possible constant.
Solution
Finding the Lagrange interpolation polynomial: For the function with nodes , , :
The Lagrange basis polynomials are:
The interpolation polynomial is:
Estimating the interpolation error:
Note: The interpolation error formula is available in the formulary.
For with interpolation points, the error is:
where and .
For our case:
- (degree 2 polynomial)
- , so (constant)
The error estimate becomes:
Find Maximum Error
To find the maximum, we first find critical points (location in the domain where slope is zero because that’s where the candidates for max error lie)
Critical points Setting
Given bounds
Evaluate errors at critical points and bounds
Answer:
- Interpolation polynomial:
- Maximum interpolation error:
Task 2 (5 points)
Using Kepler’s barrel rule, determine an approximation of and estimate the quadrature error. Explain why the estimate approximates the actual error quite closely.
Solution
Step 1: Apply Kepler’s barrel rule From the formula:
Step 2: Estimate the quadrature error From formulary, the error estimate is:
where .
Therefore:
Step 3: Compare with actual error
The exact value:
Actual error:
Why the estimate is quite close:
- The function is smooth and well-behaved on
- The maximum value occurs at , which is near the middle of the interval where the error formula tends to be most accurate
- Simpson’s rule has degree of accuracy 3
Task 3 (5 points)
Explain the idea of Romberg extrapolation. State the Romberg scheme (at least two improvement levels), including the achieved orders of convergence, for numerical integration, starting with the summed trapezoidal rule.
Solution
Theoretical answer Romberg scheme for numerical integration starting with summed trapezoidal rule:
The summed trapezoidal rule has the error expansion:
where is the step size and is the approximation with sub-intervals.
The Romberg scheme: Starting values (summed trapezoidal rule):
- with step size
- with step size
- with step size
- etc.
First improvement level: → Trapezoidal Rule
This eliminates the term from the error expansion, giving convergence order (this is Simpson’s rule).
Note: You could rewrite the expansion term and find the significant error term or we can just use the knowledge that each level improves the accuracy by one term in the expansion.
Second improvement level: is now
This eliminates the term, giving convergence order 6.
Convergence orders:
- Level 1 (trapezoidal): Order 2
- Level 2 (Simpson): Order 4
Schematic representation:
Q^(1)_J
↘
Q^(1)_2J → Q^(2)_J
↘ ↘
Q^(1)_4J → Q^(2)_2J → Q^(3)_J
↘ ↘ ↘
Q^(1)_8J → Q^(2)_4J → Q^(3)_2J → Q^(4)_J
Quick remarks for exam:
- This question has high relevance as Romberg extrapolation appears frequently in exams
- The general extrapolation formula is available in the formulary:
Task 4 (5 points)
Determine the Newton iteration for calculating a root of . Make reasoned statements about its order of convergence. Is it well suited for calculating ?
Solution
Newton Iteration The Newton iteration is given by .
Order of Convergence The order of convergence is linear (order 1).
-
Reasoning: In general, Newton’s Method has Quadratic convergence. This requires the root to be a simple root, meaning .
-
The root of is .
-
Evaluating the derivative at the root:
-
Since the derivative is zero at the root, the root has a Multiplicity greater than , and the convergence degrades from quadratic to linear.
Task 5 (5 points)
Derive the Euler-Heun method for the numerical solution of , starting with the integral of over . Indicate exact and approximate values, as well as the approximations used. State properties of the Euler-Heun method.
Solution
Task 6 (5 points)
Prove that the implicit midpoint rule has at least order of consistency . Order of Consistency of the Implicit Midpoint Rule
Task 7 (5 points)
Write down the procedure for the Butcher scheme:
Using the calculation rule, explain whether the resulting procedure is explicit or implicit.
Solution
Runge-Kutta Method Procedure For a 2-stage Runge-Kutta method with the given tableau
The Procedure is Implicit
- In the first equation, depends on itself (coefficient ) and on
- In the second equation, depends on itself (coefficient )
Task 8 (5 points)
Apply the line method to the one-dimensional wave equation with homogeneous Dirichlet boundary conditions at and , and write down the resulting system of ordinary differential equations. What is the corresponding system in matrix notation? What does the CFL condition say for this problem?
Solution
Given: with (Homogeneous Dirichlet Boundary Condition)
Spatial Discretization Using grid points where Approximate at interior points using central differences:
where
Substituting in the given PDE For :
With boundary conditions: Writing the system in Matrix form
In vector notation
Conversion to First-Order System Introduce to get: Let and
CFL Condition For explicit time integration methods, stability requires:
This ensures that the numerical domain of dependence contains the physical domain of dependence. The information propagation speed limits the time step relative to the spatial discretization.
Task 9 (Additional, 3 points)
Explain the concept of -stability of numerical methods for solving ordinary differential equations. Formulate statements about the -stability of explicit and implicit one-step methods. What special property does the Crank-Nicolson method have?
DE
Aufgabe 1 (5 Punkte)
Bestimmen Sie mit der Lagrange-Interpolation ein Polynom durch die Punkte , für und , und . Schätzen Sie den Interpolationsfehler im Intervall durch eine möglichst kleine Konstante ab.
Aufgabe 2 (5 Punkte)
Bestimmen Sie mit der Keplerschen Fassregel eine Näherung von , und schätzen Sie den Quadraturfehler ab. Begründen Sie, warum die Abschätzung den tatsächlichen Fehler recht genau trifft.
Aufgabe 3 (5 Punkte)
Erläutern Sie die Idee der Romberg-Extrapolation. Geben Sie das Romberg-Schema (mindestens zwei Verbesserungsstufen) inklusive der erreichten Konvergenzordnungen für die numerische Integration beginnend mit der summierten Trapezregel an.
Aufgabe 4 (5 Punkte)
Bestimmen Sie die Newton-Iteration zur Berechnung einer Nullstelle von . Machen Sie begründet Aussagen über ihre Konvergenzordnung. Ist sie zur Berechnung von gut geeignet?
Aufgabe 5 (5 Punkte)
Leiten Sie das Euler-Heun-Verfahren zur numerischen Lösung von her, und beginnen Sie bei dem Integral von über . Kennzeichnen Sie exakte Werte und Näherungswerte sowie die verwendeten Näherungen. Nennen Sie Eigenschaften des Euler-Heun-Verfahrens.
Aufgabe 6 (5 Punkte)
Beweisen Sie, dass die implizite Mittelpunktsregel mindestens die Konsistenzordnung 2 hat.
Aufgabe 7 (5 Punkte)
Notieren Sie das Verfahren zum Butcher-Schema
Begründen Sie anhand der Rechenvorschrift, ob das entstehende Verfahren explizit oder implizit ist.
Aufgabe 8 (5 Punkte)
Wenden Sie die Linienmethode auf die eindimensionale Wellengleichung mit homogenen Dirichlet-Randbedingungen bei und an, und notieren Sie das entstehende System von gewöhnlichen Differentialgleichungen. Wie lautet das zugehörige System in Matrixschreibweise? Was besagt die CFL-Bedingung für dieses Problem?
Aufgabe 9 (Zusatz, 3 Punkte)
Erläutern Sie das Konzept der -Stabilität von numerischen Verfahren zur Lösung von gewöhnlichen Differentialgleichungen. Formulieren Sie Aussagen über die -Stabilität von expliziten und impliziten Einschrittverfahren. Welche besondere Eigenschaft hat das Crank-Nicolson-Verfahren?