I. Bayesian Decision Theory
Fundamentals
Bayesian Classification
- Bayesian Classifier
- Bayes Decision Rule or Maximum A Posteriori
- Reconstructing Evidence
- Classifier with the Lowest Error Probability
- Error Rate comparison between a Random Guess and a Bayesian Guess
Maximum Likelihood and Related Concepts
- Maximum Likelihood Decision Rule
- Likelihood Ratio
- Maximum Likelihood vs Maximum A Posteriori in action
Error and Risk Analysis
Discriminant Functions
- Bayesian Discriminant Function
- Equivalent Discriminant Function and Examples
- Discriminant Function for Minimum Error Rate Classification
- Discriminant Function (Multi-category)
- Bayesian Discriminant Function (Gaussian)
Bayesian Networks
II. Quality Measures and Evaluation Metrics
Classification Metrics
Performance Evaluation
III. Supervised Estimation of Distribution Parameters
Probabilistic Models
Parameter Estimation Techniques
- Parameter Estimation for Maximum Likelihood
- Parameter Estimation for Maximum Likelihood (Univariate Gaussian)
- Parameter Estimation for Maximum Likelihood (Multivariate Gaussian)
- Parameter Estimation for Maximum Likelihood (Gaussian Mixture Model)
- Expectation Maximization Algorithm