It is a Quadrature where the domain is split into multiple grid points with
We sum only till because is the end point and doesn’t exist.
Example
Quadrature rule | Composite Quadrature | Fixed Step |
---|---|---|
Left Rectangle | ||
Midpoint | ||
Trapezoid | ||
Simpson’s |
Jul 23, 20231 min read
It is a Quadrature where the domain x∈[a,b] is split into multiple grid points i=0,1,2…N with a=x0<x1<⋯<xN=b
∫abf(x)dx=i=0∑N−1∫xixi+1f(x) dxWe sum only till (N−1) because i=N is the end point and xN+1 doesn’t exist.
Quadrature rule | Composite Quadrature | Fixed Step |
---|---|---|
Left Rectangle | ∑i=0N−1f(xi)(xi+1−xi) | h∑j=0J−1f(xj) |
Midpoint | ∑j=0J−1f(2xj+1+xj)(xj+1−xj) | h∑j=0J−1f(2xj+1+xj) |
Trapezoid | ∑j=0J−1(xj+1−xj)2f(xj)+f(xj+1) | 2h∑j=0J−1(f(xj)+f(xj+1)) |
Simpson’s | 6h∑j=0J−1(f(xj)+4f(2xj+xj+1)+f(xj+1)) |